

# VGPR00021

Digital Pirani Gauge with TFT display

**User Manual** 

rev. 01

#### **Product Identification**

In all communications with ALFAVAC s.r.o., please specify the information on the product nameplate.

#### **Intended Use**

The VGPR gauge have been designed for vacuum measurement of gases in the pressure range of atmosphere to  $10^{-2}$  Pa. It operates on the principle of thermal conductivity in which the rate of heat loss from a heated filament is dependent on the pressure of the gas.

The VGPR is a digital gauge and all control functions are carried out over serial communication via RS485 or integrated WiFi web server. It supports point-to-point or multi-drop communication systems.

## Safety

Personnel Qualifications



All work described in this document may only be carried out by persons who have suitable technical training.

## General Safety Instructions

- · Adhere to the applicable regulations and take the necessary precautions for the process media used.
- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.



Caution: vacuum component

Dirt and damages impair the function of the vacuum component. When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.



Caution: dirt sensitive area

Touching the product or parts thereof with bare hands increases the desorption rate. Always wear clean, lint-free gloves and use clean tools when working in this area.



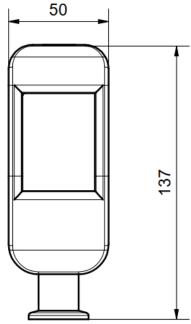
DANGER: contaminated parts

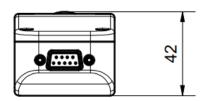
Contaminated parts can be detrimental to health and environment. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

# **Liability and Warranty**

ALFAVAC s.r.o. assumes no liability and the warranty becomes null and void if the end-user or third parties:

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations, etc.) on the product.

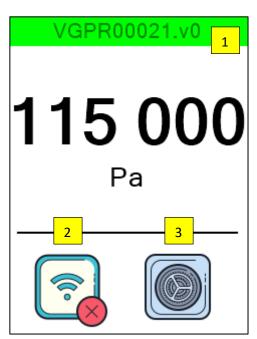

The end-user assumes the responsibility in conjunction with the process media used.


Gauge failures due to contamination, as well as expendable parts (e.g. filament), are not covered by the warranty.

# **Technical Data**

| lechnical Data              |                                                |
|-----------------------------|------------------------------------------------|
| Measurement principle       | Thermal conductance                            |
|                             | according to Pirani                            |
| Measurement range           | ATM to 10 <sup>-2</sup> Pa                     |
| Accuracy                    | ±50% (ATM to 100 hPa),                         |
|                             | ±15% (100 hPa to 10 <sup>-1</sup> Pa),         |
|                             | ±50% (10 <sup>-1</sup> to 10 <sup>-2</sup> Pa) |
| Repeatability               | 2% of reading (100 hPa to                      |
|                             | 10 <sup>-1</sup> Pa)                           |
| Supply voltage              | 10 to 35 VDC (acc. IEC                         |
|                             | 61010-1)                                       |
| Max. power consumption      | 1.5 W                                          |
| Max. inrush current         | 1 A                                            |
| Electrical connection       | D-SUB 9 pin male                               |
| Serial output               | RS-485                                         |
| Serial line - max. input    | -8 V to 12.5 V                                 |
| Serial line - differential  | min 1.5 V, max 5 V (27 Ohm                     |
| driver output               | load)                                          |
| Serial line - max. input    | 1 mA                                           |
| current                     |                                                |
| Serial line – default setup | 9600 baud, 8 bits, 1 stop bit,                 |
|                             | no parity                                      |
| Max. baud rate              | 38400 baud                                     |
| Wireless                    | 2.4 GHz Wi-Fi (IEEE                            |
|                             | 802.11b/g/n)                                   |
| Display                     | Touch TFT, 320x240 px, 16                      |
|                             | bit                                            |
| Operating temperature       | 5 to 60°C                                      |
| range                       |                                                |
| Storage temperature         | -30 to 70°C                                    |
| range                       |                                                |
| Max. bake-out               | 150°C                                          |
| (electronics removed)       |                                                |
| Max. relative humidity      | 80%                                            |
| Max. altitude               | 3000 m                                         |
| Max. internal pressure      | 10 bar                                         |
| Pollution degree            | 2                                              |
| Materials exposed to        | Tungsten                                       |
| vacuum - filament           |                                                |
| Materials exposed to        | Stainless steel 304, Glass, Ni                 |
| vacuum - other              |                                                |
| Protection class            | IP 40                                          |
| Certifications              | CE, RoHS, REACH                                |
| Connecting flange           | ISO-KF 16                                      |
| Service                     | Replaceable filament and                       |
|                             | electronics                                    |

# **Dimensions** mm






# **Graphical User Interface**

# Main page

This page displays the pressure measurements in the selected units.



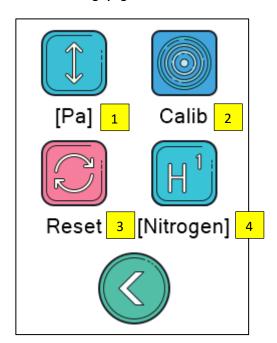
1 – Status bar, 2 – Wireless network information button (tap to enter), 3 – General settings button (tap to enter)

# Wireless network information page

This page displays the network details of the WiFi Access Point created by the web server hosting the gauge dashboard. Network credentials can be modified in the dashboard's settings section.



SSID: VGPR00021


Local IP: 192.168.4.1

Gateway: 192.168.4.1

Subnet: 255.255.255.0



# **General settings page**



1 – Units change button (tap to change), 2 – Gauge calibration (tap to proceed), 3 – Reset to default button (tap to proceed), 4 – Gas change button (tap to change)

Supported units: Pa (default), mbar, Torr

Supported gas types: Air (default), Nitrogen, Argon, CO2, Helium, Krypton, Neon, Xenon

# **Adjusting the Gauge**

The gauge is factory calibrated. Due to long time operation or contamination, a zero drift could occur. Periodically check the zero and adjust it if necessary. For adjusting the zero, operate the gauge under the same ambient conditions and in the same mounting orientation as normally. The gauge should be calibrated when gas type is nitrogen or air, the other gases are not supported.

- 1. Operate the gauge at ATM pressure for at least 10 minutes (warm-up time).
- 2. Navigate to Settings page and press Calib button. The status bar on main page will reflect calibration status.
- 3. Evacuate to  $10^{-3}$  Pa (or less) and wait at least 2 minutes.

4. Navigate to Settings page and press Calib button. The output of the gauge will be calibrated automatically.

#### Calibration via RS485:

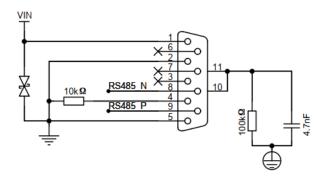
- 1. Operate the gauge at ATM pressure for at least 10 minutes (warm-up time).
- 2. Send command IS761 1. The status is displayed in the gauge status bit when read pressure command is send via RS485.
- 3. Evacuate to 10<sup>-3</sup> Pa (or less) and wait at least 2 minutes.
- 4. Send command <u>IS761 1</u>. The status is displayed in the gauge status bit when read pressure command is send via RS485. The output of the gauge will be calibrated automatically.

#### Installation

To connect the gauge to vacuum system use a centering sealing ring ISO-KF 16. Make sure that the vacuum system has a correct earth (ground) connection. The gauge can be installed in any direction, however vertical direction from top is preferred.



WARNING: High Pressure


Risk of damage to equipment. If the pressure is more than the atmospheric pressure, the standard centering rings are not applicable.

#### **Electrical Installation**

Use the pins on the electrical connector as shown in the following table. Maximum cable length is 100 m.

| Pin | Description                             |
|-----|-----------------------------------------|
| 1   | Electrical supply positive (VIN)        |
| 2   | Electrical supply ground (GND, 0 V)     |
| 3   | Not connected                           |
| 4   | ID resistor                             |
| 5   | RS485 common                            |
| 6   | Not connected                           |
| 7   | Not connected                           |
| 8   | RS485 negative/Data B/Inverted line     |
| 9   | RS485 positive/Data A/Non-inverted line |

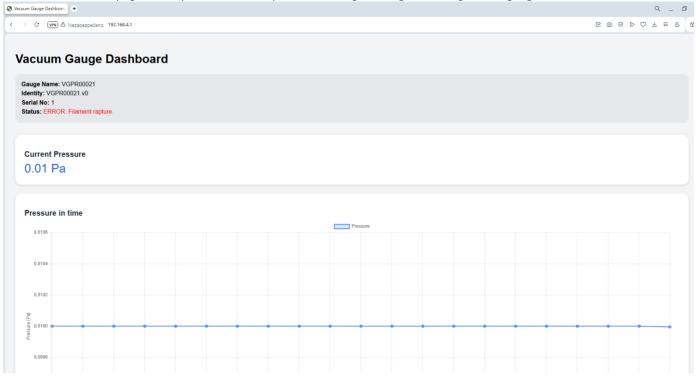
# Electrical connection schematics:



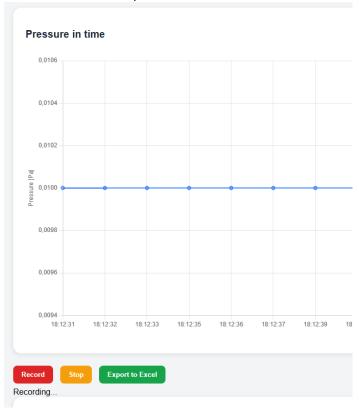
# Connect to wireless network

Upon powering up, the gauge automatically creates its own WiFi Access Point (AP) and starts an embedded web server that hosts the configuration and monitoring dashboard.

To connect to the gauge and access its web interface, follow these steps:


- 1. Power on the gauge.
  - Wait approximately 10–15 seconds for the WiFi Access Point to initialize.
- 2. Connect your PC to the gauge's WiFi network.
  - Open the WiFi settings on your PC.
  - Look for a default network name (SSID): VGPR00021
  - Select the network and connect.
  - o Input a default password: alfavac123.

- 3. Open a web browser on your PC.
  - In the address bar, type the default IP address: http://192.168.4.1
  - o Press Enter to load the gauge dashboard.

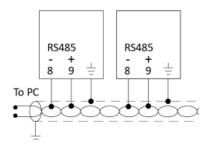

Note: Make sure your PC is not connected to another WiFi network simultaneously, as this may prevent access to the local web server.

# Web dashboard interface

Once the dashboard page loads, you can monitor pressure, change settings, or configure the gauge as needed.



In the chart section you can record the pressure reading over time. By pressing the Stop button the recording will end and recorded data can be exported to Excel file.




In the settings section, you can configure the network credentials and select the preferred pressure units. A confirmation message will appear upon successful saving of the settings. Please note that any changes to the network settings will only take effect after re-powering the gauge.

| Settings<br>Pressure units | SSID          |
|----------------------------|---------------|
| ressure units              | 23ID          |
| Pa                         | vGPR00021     |
| Password                   | IP address    |
|                            | 192.168.4.1   |
| Gateway                    | Subnet        |
| 192.168.4.1                | 255.255.255.0 |
| Gauge name                 |               |
| VGPR00021                  |               |
|                            |               |
| Save settings              |               |
|                            |               |

### **Connect to the Serial Interface**

The gauge has built in RS485 interface which can be used for point-to-point or multi-drop communication. RS485 uses two lines for differential data transfers. Multiple gauges can be connected to the same serial bus. It is recommended to use the shielded twisted pair cable to reduce interference problems. Long links may require the additional 120 Ohm terminating resistors at each end to improve communication reliability.



# Operation

In the case of cold start the gauge should be warmed-up for at least 10 minutes before the actual measurement. If this step is not followed it may cause incorrect measurements.



WARNING: High temperature of the filament

Risk of injury or damage to equipment. Do not use the gauge to measure explosive or flammable gases or mixtures. The gauge has a heated filament.

## **Serial Communication**

The communication is ASCII based text and works on the client/server principle. The gauge is the server and will only transmit a message in response to client which must always start the conversation.

## **Message Basics**

A conversation consists of a message to the gauge and its response. The response must be received before continuing.

# **Message Structure**

Commands follow a standardized structure to address devices and specify actions.

# #<Destination ID>:<Source ID><Command>

# Multi-Drop header:

- 1. # Denotes the start of a message.
- 2. < Destination ID> Two-digit identifier for the target device (e.g., 01 for device 1, 00 for broadcast).
- 3. : Separator between IDs.

4. <Source ID> Two-digit identifier for the sending device.

# Message contend:

5. <Command> The actual instruction for the gauge.

## Example:

#01:02?V752 Request pressure from device 01, sent by device 02.

#00:01!S755 2 Broadcast to all devices, setting the pressure units to Pascal.

# **Response Format**

=<Command><Data>;<Status>

or

\*<Command><Data>;<Status>

- 1. = or \* Denotes the start of a response.
- 2. <Command> The command that triggered the response.
- 3. <Data> The data requested or acknowledgment of the action.
- 4. <Status> Number representation of the gauge operational status.

In the case of multi-drop configuration, the multi-drop header is used before response contend.

#### Example

=V752 1.23;2 Pressure is 1.23 with status 2 (e.g., calibration in progress).

# Multi-Drop

In multi-drop configuration, each device is assigned a unique node address (1-98). Address 00 is reserved for broadcasting (point-to-point) commands to all devices. Only devices matching the Destination ID will respond, ensuring proper communication in networked setups. In point-to-point communication the multi-drop header can be omitted.

# **Supported Commands**

| Command       | Description                         |
|---------------|-------------------------------------|
| ?V752         | Request pressure and status.        |
| !S755 <n></n> | Set pressure units.                 |
| !S756 <n></n> | Set gas type.                       |
| !S753 <n></n> | Lock/unlock gauge settings.         |
| !S750 <n></n> | Set node address.                   |
| ?\$750        | Read node address.                  |
| !C780 <n></n> | Set RS485 baud rate.                |
| ?\$790        | Request gauge serial number.        |
| ?\$0          | Request gauge identity and firmware |
|               | version.                            |
| !S757 1       | Reset gauge to factory defaults.    |

# **Error Handling**

The error codes are sent within the response in Data section and the code 00 means OK state (no error).

| Error Code | Description                             |
|------------|-----------------------------------------|
| *E1        | Unknown command.                        |
| *E4        | Parameter out of range.                 |
| *E5        | Invalid command in current state (e.g., |
|            | locked).                                |

# **Gauge Status**

The gauge status value is representation of various operational states and error flags. Each value represents a specific condition or flag.

| Value | Description                                                  |
|-------|--------------------------------------------------------------|
| 0     | Sensor OK.                                                   |
| 1     | Sensor error (e.g., sensor malfunction or filament rapture). |
| 2     | Calibration in progress.                                     |

#### **Pressure Units**

Sets the pressure units for the gauge measurement.

Command: !S755 <value>

Response: \*S755 00 (OK) or \*E4 (Parameter out of range)

Restrictions: The command will not execute if the gauge settings are locked.

Example: !S755 1 (Sets pressure units to mbar)

| Value | Description      |
|-------|------------------|
| 1     | mbar             |
| 2     | Pascal (default) |
| 3     | Torr             |

# **Gas Types**

Changes the gas type affecting pressure measurement.

Command: !S756 <value>

Response: \*S756 00 (OK) or \*E4 (Parameter out of range)

Restrictions: The command will not execute if the gauge settings are locked.

Example: !S756 3 (Sets gas type to Helium)

| Value | Description     |
|-------|-----------------|
| 0     | Nitrogen        |
| 1     | Argon           |
| 2     | CO <sub>2</sub> |
| 3     | Helium          |
| 4     | Krypton         |
| 5     | Neon            |
| 6     | Xenon           |
| 7     | Air (default)   |

## Lock/Unlock Gauge

Locks or unlocks the gauge settings to prevent configuration changes. The change attempt of the locked gauge will result in \*E5 error (Invalid command in current state).

Command: !S753 <value>

Response: \*S753 00 (OK) or \*E4 (Parameter out of range)

Example: !S753 1 (Locks settings)

| Value | Description                           |
|-------|---------------------------------------|
| 0     | Unlock (allows changes)               |
| 1     | Lock (prevents configuration changes) |

# **Baud Rates**

Changes the RS485 communication baud rate for the gauge.

Command: !C780 <value>

Response: \*C780 00 (OK) or \*E4 (Parameter out of range)

Example: !C780 5 (Sets baud rate to 115200)

| Value | Description         |
|-------|---------------------|
| 1     | 38400 baud          |
| 2     | 19200 baud          |
| 4     | 9600 baud (default) |
| 5     | 115200 baud         |
| 6     | 230400 baud         |

# **Pressure measurement**

This command requests the current pressure reading and the gauge status.

Command: ?V752

Response: =V752 ressure>;<status> Example Response: =V752 1.23;0

#### **Set Node Address**

Sets the node address for the gauge in a multi-drop configuration. Integer specifying the RS485 node address (valid range: 1 to 98). Setting 0 disables multi-drop mode (default).

Command: !S750 <address>

Response: \*S750 00 (OK) or \*E4 (Parameter out of range)

Example: !S750 5 (Sets node address to 5)

#### **Read Node Address**

Requests the current node address of the gauge.

Command: ?S750

Response: =S750 <nodeAddress>

Example: =S7505

# **Serial Number**

Requests the serial number of the gauge.

Command: ?S790

Response: =S790 <serialNumber>

# **Gauge Identity**

Requests the gauge's identity and firmware version.

Command: ?SO

Response: =S0 <gaugeID>.<version>

# **Reset to Factory Defaults**

Resets the gauge configuration to factory default settings. It sets units to Pascal, gas type to Air, node address to 0 (multi-drop disabled) and unlock the settings.

Command: !S757 1 Response: \*S757 00 (OK)

# **Gauge Calibration**

Calibration of gauge output. See Adjusting the Gauge chapter.

Command: !S761 1

Response: \*S755 00 (OK) or \*E5 (Invalid command)

## Maintenance

Cleaning vacuum flange:

- 1. Remove the gauge from the vacuum system
- 2. Fill the gauge flange with isopropyl alcohol
- 3. Allow 5 minutes for the isopropyl alcohol to take effect
- 4. Dry or bake-out the isopropyl alcohol from the gauge flange. The bake-out temperature should not extend 150 °C. Remove electronics before bake-out procedure.
- 5. Reconnect the gauge to the vacuum system

In case of severe contamination or a malfunction, please contact ALFAVAC s.r.o. for reparation.

## **Product Compliance**





